Mathematical-Logic6
Before:稍有强度的一周,主要表现在…超级大的数学物理数理逻辑强度,但感觉经过3、4天的摸爬滚打,基本上还是搞明白了😇还有平安度过的XZJT(感觉还是挺成功的?maybe)继续加油!
ps:昨天小姐姐double happy了🥰🥰
Mathematical Logic 6
Call back: Introduction to Sequent Calculus
10 Basic Rules
-
Antecedent
-
Assumption
-
Case Analysis
-
Contradiction
-
V-introduction in antecedent
-
V-introduction in succedent
-
∃ -introduction in succedent
-
∃ -introduction in antecedent
-
Equality
-
Substitution
Every Basic Rules is correct.(can be proved)
Derived Rules 1
-
Excluded middle
-
Modified Contradiction
-
Chain Deduction
Derived Rules 2
Modus Ponens
$\Gamma \vdash \varphi \rightarrow \psi $
$\Gamma \vdash \varphi$
—————————
$\Gamma \vdash \psi$
Derived Rules 3
1.Symmetry of $\equiv$
$\Gamma \vdash t_1 \equiv t_2$
—————————
$\Gamma \vdash t_2 \equiv t_1$
2.Transitivity of $\equiv$
$\Gamma \vdash t_1 \equiv t_2$
$\Gamma \vdash t_2 \equiv t_3$
—————————
$\Gamma \vdash t_1 \equiv t_3$
3.For n-ary relation symbol R $\in$ S
can be proved by using Substitution Lemma
$\Gamma \vdash R t_1 \ldots t_n $
$\Gamma \vdash t_1 \equiv t’_1 $
$\Gamma \vdash t_2 \equiv t’_2 $
$\cdots \cdots$
$\Gamma \vdash t_n \equiv t’_n $
—————————
$\Gamma \vdash R t’_1 \ldots t’_n$
4.For n-ary function symbol R $\in$ S
can also be proved by using Substitution Lemma
$\Gamma \vdash t_1 \equiv t’_1 $
$\Gamma \vdash t_2 \equiv t’_2 $
$\cdots \cdots$
$\Gamma \vdash t_n \equiv t’_n $
—————————
$\Gamma \vdash f t_1 \ldots t_n \equiv f t’_1 \ldots t’_n$
Soundness
-
Defintion
-
Lemma 1
-
Theorem 2(Soundness)
If $\Phi \vdash \varphi$,then $\Phi \vDash \varphi$
Opposite is Completeness and we will prove it in later lessons.
Consistency
Defintion
$\Phi$ is consistent if there is no $\varphi$ such that both $\Phi$ ⊢ $\varphi$ and $\Phi$ ⊢ $\neg$$\varphi$. Otherwise,$\Phi$ is inconsistent.
Lemma3: $\Phi$ is inconsistent if and only if $\Phi \vdash \varphi$ for any formulas $\varphi$.
This can be proved by using Modified Contradiction.
Lemma 4: $\Phi$ is consistent if and only if there is a $\varphi$ such that $\Phi \not\models \varphi$.
This can be proved by using Modified Contradiction.
Lemma 5: $\Phi$ is consistent if and only if every finite $\Phi_0 \subset \Phi$
Lemma 6: Every satisfiable $\Phi$ is consistent.
(Prove from the negative perspective using soundness and build a model)
Lemma 7:
(1) $\Phi \vdash \varphi$ if and only if $\Phi \cup \neg\varphi$ is inconsistent.
Easy to prove.
(2) $\Phi \vdash \neg\varphi$ if and only if $\Phi \cup \varphi$ is inconsistent.
(3)If cons($\Phi$),then either cons($\Phi \cup \varphi$) or cons($\Phi \cup \neg\varphi$).
So the end of Sequent Calculus.
Start of Question 2: What makes a proof correct?
能证的都是对的(soundness),对的都是能证的(Completeness完备性)。
Theorem 8
If $\Phi \models \varphi$,$\Phi \vdash \varphi$
Theorem 9
cons($\Phi$) implies that $\Phi$ is satisfiable.
Term Model(version 1)
Define the term model $\mathcal{I}^\Phi(t)$ so that for every t $\in T^S$.
$\mathcal{I}^\Phi(t) = t$
把语法对象作为语义的universe
That is, the interpretation of an S-term $t$ is the syntax object $t \in T^S$ itself.
Universe:A = $T^S$
n-ary function symbol:
$f^A(t_1, \ldots, t_n) := f t_1 \ldots t_n.$
n-ary relation symbol:
$R^A = {(t_1, \ldots, t_n) | \Phi \vdash R t_1 \ldots t_n}.$
$c^A := c$ and $\beta(v_i) := v_i$ for every variable $v_i$
But:we will meet a problem.
Let S = {f} where f is a function symbol and $\Phi:={fv_0 \equiv fv_1}$
-
$\mathcal{I}^\Phi(fv_0) = fv_0 \neq fv_1 = \mathcal{I}^\Phi(fv_1)$(2 strings are not the same)
-
$\mathcal{I}^\Phi \models \Phi$ implies that $\mathcal{I}^\Phi(fv_0) = \mathcal{I}^\Phi(fv_1)$
Contradict!😢😰😢😰
To Overcome The Issue!
在项的集合上定义一个等价关系,define an equivalence relation ~ on $T^S$
Let $t_1$, $t_2$ $\in T^S$.Then $t_1$ ~ $t_2$ if $\Phi \vdash t_1 \equiv t_2$.
(Easy to prove equivalence relation)
Introduce the Equivalence Class of t.
For every $t \in T^S$ we define:
$\overline{t} := {t’ \in T^S \mid t’ \sim t}$
Through Derived Rules 3,we can prove that:
-
For every $n$-ary function symbol $f \in S$ and terms $t_1 \sim t_1’, \ldots, t_n \sim t_n’$, we have
$f t_1 \cdots t_n \sim f t_1’ \cdots t_n’.$ -
For every $n$-ary relation symbol $R \in S$ and terms $t_1 \sim t_1’, \ldots, t_n \sim t_n’$, we have
$\Phi \vdash R t_1 \cdots t_n \iff \Phi \vdash R t_1’ \cdots t_n’.$
So we will introduce…
Term Model(version 2)!!!
The term structure for $\Phi$, denoted by $\mathfrak{T}^{\Phi}$, is defined as follows.
(i) The universe is ${T}^{\Phi} := {\overline{t} \mid t \in T^S}$.
(ii) For every $n$-ary relation symbol $R \in S$, and $\overline{t}_1, \ldots, \overline{t}_n \in T^{\Phi}$
$(\overline{t}_1, \ldots, \overline{t}_n)$ $\in {R}\mathfrak{T}{\Phi} \text{if} \Phi \vdash R t_1 \ldots t_n.$
(iii) For every $n$-ary function symbol $f \in S$, and $\overline{t}_1, \ldots, \overline{t}_n \in T^{\Phi}$
${f}\mathfrak{T}{\Phi}$ $(\overline{t}_1, \ldots, \overline{t}_n)$ := $\overline{f t_1 \ldots t_n}.$
(iv) For every constant $c \in S$
${c}\mathfrak{T}{\Phi}$ := $\overline{c}.$
And we still need an assignment:
$\mathfrak{\beta}^{\Phi}(v_i):= \overline{v_i}$
So we have the Heenkin’s term model:
$\mathfrak{I}{\Phi}$:=($\mathfrak{T}{\Phi},\mathfrak{\beta}^{\Phi}$)
Lemma 11:
(1)For any $t$ $\in T^S$:
$\mathfrak{I}^{\Phi}(t) = \overline{t}$
(2)For every atomic $\varphi$
$\mathfrak{I}^{\Phi} \models \varphi \iff \Phi \vdash \varphi$