Mathematical Logic 7 Completeness 1

Before:久违的数理逻辑课!上了7节课终于觉得有点入门了,还是挺有意思的。周四下午闪击南京,周五下午又闪击回来。虽然只有1天,但很开心在这短短的20个小时内帮助了不少人(都是无意间)。我要永远做个善良的人!

Mathematical Logic 7 Completeness 1

我们继续完备性的证明!
我们知道,要证明一阶逻辑的完备性,我们只需要证明:

Given a consisitent Φ\Phi,it suffices to construct a term model IΦ\mathfrak{I}^{\Phi} = (TΦ,βΦ\mathfrak{T}^{\Phi},\mathfrak{\beta}^{\Phi}) such that:
IΦ\mathfrak{I}^{\Phi} \models φ\varphi \iff Φ\Phi \vdash φ\varphi.

昨晚室友问我为了体现完备性,就是要证明Φ\Phi \models φ\varphi, Φ\Phi \models φ\varphi 难道不是在说对于任何一个Φ\Phi 上的模型,都能使φ\varphi为真吗?但是这里不是只找了一个模型吗?我想这应该是由于Henkin’s Term Model的特殊性,但这个留到后几节课再讨论了。

Henkin’s Term Model Recall 模型回顾

首先引入等价类的概念:
Let $ t_1,t_2 $ \in TST^S.Then $ t_1 $ ~ $ t_2 $ if Φ\Phi \vdash t1t2t_1\equiv t_2.

For every t \in TST^S we define:
t\overline{t} := {t’ \in TST^S |t’ ~ t}

Definition
The term structure for (\Phi), denoted by (\mathfrak{I}^{\Phi}), is defined as follows.

  1. Universe:
    TΦ:={ttTS}. T^{\Phi} := \{\overline{t} \mid t \in T^S\}.

  2. Relation symbols:
    For every \(n\)-ary relation symbol \(R \in S\), and \(\overline{t_1}, \ldots, \overline{t_n} \in T^{\Phi}\),
    (t1,,tn)RIΦifΦRt1tn. (\overline{t_1}, \ldots, \overline{t_n}) \in R^{\mathfrak{I}^{\Phi}} \quad \text{if} \quad \Phi \vdash R t_1 \ldots t_n.

  3. Function symbols:
    For every \(n\)-ary function symbol \(f \in S\), and \(\overline{t_1}, \ldots, \overline{t_n} \in T^{\Phi}\),
    fIΦ(t1,,tn):=ft1tn. f^{\mathfrak{I}^{\Phi}} (\overline{t_1}, \ldots, \overline{t_n}) := f \overline{t_1} \cdots t_n.

  4. Constants:
    For every constant \(c \in S\),
    cIΦ:=c. c^{\mathfrak{I}^{\Phi}} := \overline{c}.

For every variable viv_i,we let:
\mathfrak{\beta}^{\Phi}\(v_i\) := vi\overline{v_i}

对于原子公式成立 atomic φ\varphi

Lemma 5

(i) For any \( t \in T^S \),
IΦ(t)=t¯. \mathfrak{I}^\Phi(t) = \bar{t}.

(ii) For every atomic \(\varphi\),
\mathfrak{I}^\Phi \models \varphi \iff \Phi \vdash \varphi.

(i)的证明,我们对项t进行归纳

  • t = viv_i is a variable
  • t = c is a constant
  • t = ft1...tnt_1...t_n

根据定义可证

(ii)的证明,对2个原子公式进行分类讨论:
IΦt1t2 \mathfrak{I}^\Phi \models t_1 \equiv t_2
IΦRt1...tn \mathfrak{I}^\Phi \models Rt_1...t_n
利用(i)中所证,可证

Consistent,Negation Complete,Contains Witness

Lemma 8

先看一个引理:

Lemma 8

Let (\varphi) be an (S)-formula and (x_1, \ldots, x_n) pairwise distinct variables. Then

(i)

IΦx1xnφ \mathfrak{I}^\Phi \models \exists x_1 \ldots \exists x_n \varphi
if and only if there are (S)-terms (t_1, \ldots, t_n) such that
IΦφt1tnx1xn. \mathfrak{I}^\Phi \models \varphi \frac{t_1 \ldots t_n}{x_1 \ldots x_n}.

(ii)

IΦx1xnφ \mathfrak{I}^\Phi \models \forall x_1 \ldots \forall x_n \varphi
if and only if for all (S)-terms (t_1, \ldots, t_n) we have
IΦφt1tnx1xn. \mathfrak{I}^\Phi \models \varphi \frac{t_1 \ldots t_n}{x_1 \ldots x_n}.

由替换引理等可证

Consistent

Definition
Φ\Phi is consistent if there is no φ\varphi such that both Φ\Phiφ\varphi and Φ\Phi¬\negφ\varphi. Otherwise,Φ\Phi is inconsistent.

Negation Complete

Definition
A set (\Phi) is negation complete if for every (S)-formula (\varphi):
Φφ or Φ¬φ. \Phi \vdash \varphi \text{ or } \Phi \vdash \neg \varphi.

通俗的说,就是如果Φ\Phi 证不出来φ\varphi,那就一定能证出来¬φ\neg \varphi;证不出来¬φ\neg \varphi,那就一定能证出来φ\varphi

Contains Witness

Definition

🔍 A set Φ\Phi contains witnesses if for every φLS\varphi \in L^S and every variable xx, there exists a term tTSt \in T^S such that:

Φ(xφφtx). \Phi \vdash \left( \exists x \varphi \to \varphi \frac{t}{x} \right).

Henkin’s Theorem Proof

First,还是先来证明一个引理:

Lemma 9

Assume that Φ\Phi is consistent, negation complete, and contains witnesses. Then for all SS-formulas φ\varphi and ψ\psi:

(i)
Φφ\Phi \vdash \varphi if and only if \Phi \not\vdash \neg \varphi.

(ii)
Φ(φψ)\Phi \vdash (\varphi \vee \psi) if and only if Φφ\Phi \vdash \varphi or Φψ\Phi \vdash \psi.

(iii)
Φxφ\Phi \vdash \exists x \varphi if and only if there is a term tTSt \in T^S such that Φφtx\Phi \vdash \varphi \frac{t}{x}.

(i)向右通过consistent定义说明,向左通过negation complete定义说明
(ii)向左利用V-intro by succedent证明,向右证明如下:
Assume that Φ¬φ\Phi \vdash \neg \varphi
Proof Steps:
Lemma 9(ii)Proof

(iii)向右可通过Modus ponens证明,向左可通过\exist-intro in succedent证明

Henkin’s Theorem

由引理证明起来还是比较显然的:
Henkin's Theorem Proof

注意,这里对公式的归纳是对公式的connective rank归纳,保证要证的公式都更长:
Rank Definition:
rk(\varphi) := \begin{cases} 0 & \text{if } \varphi \text{ is atomic,} \ 1 + rk(\psi) & \text{if } \varphi = \neg\psi, \ 1 + rk(\psi_1) + rk(\psi_2) & \text{if } \varphi = (\psi_1 \lor \psi_2), \ 1 + rk(\psi) & \text{if } \varphi = \exists x \psi. \end{cases}


Mathematical Logic 7 Completeness 1
http://example.com/2025/04/12/Mathematical-Logic7/
Author
Yihan Zhu
Posted on
April 12, 2025
Updated on
April 12, 2025
Licensed under